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Abstract

The steady thermocapillary migration of a fluid droplet located between two infinite parallel plane walls
is studied theoretically in the absence of fluid inertia and thermal convection. The imposed temperature
gradient is constant and parallel to the two plates, and the droplet is assumed to retain a spherical shape.
The plane walls may be either insulated or prescribed with the far-field temperature distribution. The
presence of the neighboring walls causes two basic effects on the droplet velocity: first, the local temperature
gradient on the droplet surface is enhanced or reduced by the walls, thereby speeding up or slowing down
the droplet; secondly, the walls increase viscous retardation of the moving droplet. To solve the thermal and
hydrodynamic governing equations, the general solutions are constructed from the fundamental solutions
in both the rectangular and spherical coordinate systems. The boundary conditions are enforced first at the
plane walls by the Fourier transforms and then on the droplet surface by a collocation technique. Nu-
merical results for the thermocapillary migration velocity of the droplet relative to that under identical
conditions in an unbounded medium are presented for various values of the relative viscosity and thermal
conductivity of the droplet as well as the relative separation distances between the droplet and the two
plates. For the special cases of thermocapillary motions of a spherical droplet parallel to a single plate and
on the central plane of a slit, the collocation results agree well with the approximate analytical solutions
obtained by using a method of reflections. The presence of the lateral walls can reduce or enhance the
droplet velocity, depending upon the relative transport properties of the droplet, the relative droplet-wall
separation distances, and the thermal boundary condition at the walls. In general, the boundary effect on
thermocapillary migration is quite complicated and relatively weak in comparison with that on sedimen-
tation. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A droplet of one fluid, when suspended in a second, immiscible fluid possessing a temperature
gradient, will move in the direction of the gradient. The physical explanation of this movement is
that the temperature gradient produces a gradient of interfacial tension or Marangoni force along
the droplet surface, which drags fluid and propels the droplet toward regions where its interfacial
tension would be reduced (usually, hot regions). In addition to its importance from a fundamental
point of view, this thermocapillary effect has become a subject of current interest with the de-
velopment of the orbiting spacecraft and opportunities for experimenting and manufacturing
under near-weightless conditions. For example, the removal of unwanted or wanted gas bubbles
or liquid droplets from a liquid phase by thermocapillary forces will be encountered during the
processing of materials (such as high technology glass and alloy mixtures) in the reduced gravity
environment provided by an orbiting laboratory.
The thermocapillary migration of gas bubbles was first demonstrated experimentally by Young

et al. (1959). They also theoretically calculated the migration velocity of a spherical fluid droplet
of radius a placed in an infinite expanse of suspending fluid of viscosity g, with a prescribed linear
temperature distribution T1ðxÞ. If the droplet is sufficiently small that effects of inertia and
convection of energy are negligible, its velocity U0 is related to the constant temperature gradient
rT1 by the formula

U0 ¼
2

ð2þ k�Þð2þ 3g�Þ

�
� oc
oT

�
a
g
rT1; ð1Þ

where oc=oT is the variation of the interfacial tension c between the droplet and the continuous
phase with respect to the local temperature T (with a typical value of 10�4 Nm�1 K�1), and k� and
g� are the ratios of thermal conductivities and viscosities, respectively, between the internal and
external fluids. In (1), all the physical properties are assumed to be constant except for the in-
terfacial tension, which is assumed to vary linearly with temperature. The thermocapillary mi-
gration velocity of a single gas bubble can be evaluated by (1) taking the limiting values k� ¼ 0
and g� ¼ 0.
Eq. (1) serves only for a droplet in continuous phases that extend to infinity in all directions.

However, in practical applications of thermocapillary motion, droplets usually are not isolated
and will move in the presence of neighboring droplets and/or boundaries (Meyyappan et al., 1981,
1983; Anderson, 1985; Acrivos et al., 1990; Morton et al., 1990; Satrape, 1992; Loewenberg and
Davis, 1993a,b; Kasumi et al., 2000). During the past two decades, much progress has been made
in the theoretical analysis concerning the applicability of (1) for a fluid particle in a variety of
bounded systems. Through an exact representation in spherical bipolar coordinates, Meyyappan
et al. (1981) and Sadhal (1983) solved the quasisteady problem of thermocapillary motion of a
spherical gas bubble normal to an infinite planar solid or free fluid surface of constant temper-
ature. Later, Meyyappan and Subramanian (1987) examined the thermocapillary motion of a gas
bubble parallel to a rigid plane surface on which the far-field temperature gradient was imposed.
In both cases, the bubble velocity was found to decrease monotonically relative to its isolated
value given by (1) for motions close to the boundary.
Extending the analysis by Meyyappan et al. (1981) for a gas bubble, Barton and Subramanian

(1990) and Chen and Keh (1990) determined the thermocapillary migration velocity of a fluid
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droplet in the direction perpendicular to a nearby isothermal planar solid or free surface. Ana-
lytical solutions of this problem in asymptotic forms were obtained by using a method of re-
flections (Chen and Keh, 1990; Chen, 1999) and a lubrication approach (Loewenberg and Davis,
1993b). The effect of a planar solid surface on fluid drops undergoing thermocapillary motion
normal to it has also been investigated experimentally (Barton and Subramanian, 1991) and was
found to be in good agreement with the predictions from the quasisteady analyses. Chen et al.
(1991) used a boundary-collocation method to solve for the axisymmetric thermocapillary motion
of a spherical drop within a long circular insulated tube. They found that the fluid sphere in the
tube always moves slower than it does in an infinite medium as a result of the lateral wall-drop
thermal and hydrodynamic interactions, and the thermocapillary velocity is a monotonically
decreasing function of the ratio of the sphere to the tube diameter for fixed values of k� and g�. At
constant values of g� and the sphere-to-tube diameter, the migration velocity of the drop in the
tube relative to the isolated value increases as k� decreases, because a greater portion of energy is
conducted through the relatively conductive gap between the drop and the insulated tube wall
which creates a larger interfacial tension gradient. In addition to the above-mentioned studies for
the boundary effects on the thermocapillary motion of fluid spheres, the migration of a de-
formable drop normal to an isothermal rigid plane due to thermocapillarity has also been ex-
amined (Ascoli and Leal, 1990).
The objective of this article is to obtain exact numerical solutions and approximate analytical

solutions for the thermocapillary motions of a spherical fluid droplet parallel to a single plane wall
and to two plane walls at an arbitrary position between them. The plane walls may be either
insulated or prescribed with the linear far-field temperature distribution. The effects of inertia as
well as thermal convection are neglected. For the case of a droplet with a relatively low thermal
conductivity undergoing thermocapillary migration near insulated plane walls or of a droplet with
a relatively high conductivity undergoing thermocapillary movement near plane walls prescribed
with the far-field temperature distribution, the heat conduction around the droplet will generate
larger temperature gradients on the droplet surface relative to those in an infinite medium. These
gradients enhance the thermocapillary migration velocity, although their action will be retarded
by the viscous interaction of the migrating droplet with the walls. Both effects of this thermal
enhancement and the hydrodynamic retardation increase as the ratios of the radius of the droplet
to its distances from the walls increase. Determining which effect is overriding at small droplet-
wall gap widths is a main target of this study.

2. Analysis

We consider the steady thermocapillary migration of a spherical fluid droplet of radius a in an
immiscible fluid parallel to two infinite plane walls whose distances from the center of the droplet
are b and c, as shown in Fig. 1. Here (x; y; z), (q;/; z), and (r; h;/) denote the rectangular, circular
cylindrical, and spherical coordinate systems, respectively, and the origin of coordinates is chosen
at the droplet center. A linear temperature field T1ðxÞ with a uniform thermal gradient E1ex
(equal to rT1) is imposed in the surrounding fluid far away from the droplet, where ex is the unit
vector in the x direction. The capillary number gU0=c (where U0 ¼ jU0j is given by (1)) is assumed
to be sufficiently small so that interfacial tension maintains the spherical shape of the droplet
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during the confined thermocapillary migration. Gravitational and natural-convection effects are
ignored. The objective is to determine the correction to (1) for the droplet velocity due to the
presence of the plane walls.
Before determining the thermocapillary migration velocity of the droplet, the temperature and

velocity fields in both internal and external fluid phases need to be found.

2.1. Temperature distribution

The Marangoni number (Peclet number) of the system is assumed to be small. Hence, the
equation of energy governing the temperature distribution T ðxÞ for the external fluid of constant
thermal conductivity k is the Laplace equation,

r2T ¼ 0 ðrP aÞ: ð2aÞ

For the temperature field T1ðxÞ inside the droplet, one has

r2T1 ¼ 0 ðr6 aÞ: ð2bÞ

The boundary conditions require that the temperature and the normal component of heat flux
be continuous at the droplet surface and that the temperature field far away from the droplet
approach the undisturbed values. Thus,

r ¼ a : T ¼ T1; k
oT
or

¼ k1
oT1
or

; ð3a;bÞ

z ¼ c;�b :
oT
oz

¼ 0; ð3cÞ

q ! 1 : T ¼ T0 þ E1x; ð3dÞ

where k1 is the thermal conductivity of the droplet and T0 is the (undisturbed) temperature at the
droplet center. Note that the boundary conditions given by (3c) apply for the case of two insulated
plane walls. For the case of thermocapillary motion of a droplet parallel to two plane walls

Fig. 1. Geometrical sketch for the thermocapillary motion of a spherical droplet parallel to two plane walls at an

arbitrary position between them.
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prescribed with a linear temperature profile consistent with the far-field distribution, (3c) should
be replaced by

z ¼ c;�b : T ¼ T0 þ E1x: ð3eÞ

For the special case of k1 ¼ k, both (3c) and (3e) lead to the same linear temperature field for the
whole fluid phases as for the far field.
Since the governing equations and boundary conditions are linear, one can express the external

temperature distribution T, which is symmetric with respect to y and antisymmetric with respect
to x, as the superposition

T ¼ Tw þ Ts: ð4Þ

Here, Tw is a double Fourier integral solution of (2a) in rectangular coordinates that represents the
disturbance produced by the plane walls plus the undisturbed temperature field and is given by

Tw ¼ T0 þ E1xþ E1

Z 1

0

Z 1

0

ðX ejz þ Y e�jzÞ sinðaxÞ cosðbyÞdadb; ð5Þ

where X and Y are unknown functions of separation variables a and b, and j ¼ ða2 þ b2Þ1=2. The
second term on the right-hand side of (4), Ts, is a solution of (2a) in spherical coordinates rep-
resenting the disturbance generated by the droplet and is given by an infinite series in harmonics,

Ts ¼ E1
X1
n¼1

Rnr�n�1P 1n ðlÞ cos/; ð6Þ

where P 1n is the associated Legendre function of order n and degree one, l is used to denote cos h
for brevity, and Rn are unknown constants. Note that a solution of T of the form given by (4)–(6)
immediately satisfies the boundary condition at infinity in (3d). Since the temperature is finite for
any position in the interior of the droplet, the solution to (2b) can be written as

T1 ¼ T0 þ E1
X1
n¼1

RnrnP 1n ðlÞ cos/; ð7Þ

where Rn are unknown constants.
A brief conceptual description of the solution procedure to determine X, Y, Rn, and Rn is given

below to help follow the mathematical development. At first, boundary conditions (given by (3c)
or (3e)) are exactly satisfied on the plane walls by using the Fourier transforms. This permits the
unknown functions X and Y to be determined in terms of the coefficients Rn. Then, the boundary
conditions in (3a,b) on the surface of the droplet can be satisfied at discrete points by making use
of the collocation method (O’Brien, 1968; Ganatos et al., 1980; Chen et al., 1991; Keh and Chen,
1993), and the solution of the collocation matrix provides numerical values for the coefficients Rn

and Rn.
Substituting the temperature distribution T given by (4)–(6) into the boundary conditions in

(3c) or (3e) and applying the Fourier sine and cosine inversions on the variables x and y, re-
spectively, lead to a solution for the functions X and Y in terms of the coefficients Rn. After the
substitution of this solution into (5) and utilization of the integral representations of the modified
Bessel functions of the second kind, the temperature distribution T can be expressed as
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T ¼ T0 þ E1xþ E1
X1
n¼1

Rnd
ð1Þ
n ðr;lÞ cos/; ð8Þ

where the functions dð1Þ
n ðr; lÞ are defined by (B.1a) in Appendix B. Applying the boundary con-

ditions given by (3a,b) to (7) and (8) yieldsX1
n¼1

Rnd
ð1Þ
n ða;lÞ

h
� RnanP 1n ðlÞ

i
¼ �að1� l2Þ1=2;

X1
n¼1

Rnd
ð2Þ
n ða;lÞ

h
� Rnk�nan�1P 1n ðlÞ

i
¼ �ð1� l2Þ1=2;

ð9Þ

where the definition of functions dð2Þ
n ðr; lÞ is given by (B.1b) and k� ¼ k1=k. Note that the definite

integrals in dð1Þ
n and dð2Þ

n must be performed numerically.
To satisfy the conditions in (9) exactly along the entire surface of the droplet would require the

solution of the entire infinite array of unknown constants Rn and Rn. However, the collocation
technique enforces the boundary conditions at a finite number of discrete points on the half-
circular generating arc of the droplet (from h ¼ 0 to p) and truncates the infinite series in (7) and
(8) into finite ones. If the spherical boundary is approximated by satisfying the conditions of
(3a,b) atM discrete points on its generating arc, the infinite series in (7) and (8) are truncated after
M terms, resulting in a system of 2M simultaneous linear algebraic equations in the truncated
form of (9). This matrix equation can be numerically solved to yield the 2M unknown constants
Rn and Rn required in the truncated form of (7) and (8) for the temperature distribution. The
accuracy of the boundary-collocation/truncation technique can be improved to any degree by
taking a sufficiently large value ofM. Naturally, as M ! 1 the truncation error vanishes and the
overall accuracy of the solution depends only upon the numerical integration required in evalu-
ating the matrix elements:

2.2. Fluid velocity distribution

With knowledge of the solution for the temperature distribution on the droplet surface which
drives the migration, we can now proceed to find the flow field. The fluids inside and outside the
droplet are assumed to be incompressible and Newtonian. Owing to the low Reynolds number,
the fluid motion caused by the thermocapillary migration of the droplet is governed by the Stokes
equations,

gr2v�rp ¼ 0; r � v ¼ 0 ðrP aÞ; ð10Þ
g1r2v1 �rp1 ¼ 0; r � v1 ¼ 0 ðr6 aÞ: ð11Þ

Here, v1ðxÞ and vðxÞ are the fluid velocity fields for the flow inside the droplet and for the external
flow, respectively, p1ðxÞ and pðxÞ are the corresponding dynamic pressure distributions, and g1 is
the viscosity of the droplet.
The boundary conditions for the fluid velocity at the droplet surface (Young et al., 1959;

Anderson, 1985), on the plane walls, and far removed from the droplet are

r ¼ a : er � ðv�UÞ ¼ 0; v ¼ v1; ð12a;bÞ
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r ¼ a : ðI� ererÞer : ðs � s1Þ ¼ � oc
oT

ðI� ererÞ � rT ; ð12cÞ

z ¼ c;�b : v ¼ 0; ð12dÞ
q ! 1 : v ¼ 0: ð12eÞ

Here, cðh;/Þ is the local interfacial tension for the droplet; s ¼ g½rvþ ðrvÞT 
 and s1 ¼ g1
½rv1 þ ðrv1ÞT 
 are viscous stress tensors for the external flow and the flow inside the droplet,
respectively; er together with eh and e/ are the unit vectors in spherical coordinates; I is the unit
dyadic; U ¼ Uex is the thermocapillary migration velocity of the droplet to be determined. Note
that oc=oT is assumed to be constant on the scale of the droplet radius and rT can be evaluated
from the temperature distribution given by (8) with coefficients determined from (9). For the
asymmetric problem as b 6¼ c, the assumption that U andrT1 are in the same direction is justified
in the absence of inertia.
In view of the linearity of the governing equations and boundary conditions, the external ve-

locity field v can be decomposed into two contributions (Ganatos et al., 1980),

v ¼ vw þ vs: ð13Þ

Here, vw is a solution of (10) in rectangular coordinates that represents the disturbance produced
by the plane walls and is given by

vw ¼ vwxex þ vwyey þ vwzez; ð14Þ

where ex, ey, and ez are the unit vectors in rectangular coordinates, and vwx, vwy , and vwz are the
double Fourier integrals,

vwx ¼
Z 1

0

Z 1

0

D1ða; b; zÞ cosðaxÞ cosðbyÞdadb;

vwy ¼
Z 1

0

Z 1

0

D2ða;b; zÞ sinðaxÞ sinðbyÞdadb;

vwz ¼
Z 1

0

Z 1

0

D3ða; b; zÞ sinðaxÞ cosðbyÞdadb:

ð15Þ

In (15)

D1 ¼ X � 1

��
þ a2

j
z
�
� X �� ab

j
z� X ���az

�
ejz þ Y � 1

��
� a2

j
z
�
þ Y �� ab

j
z� Y ���az

�
e�jz;

ð16aÞ

D2 ¼
�
� X � ab

j
zþ X �� 1

�
þ b2

j
z
�
þ X ���bz

�
ejz þ Y � ab

j
z

�
þ Y �� 1

�
� b2

j
z
�
þ Y ���bz

�
e�jz;

ð16bÞ
D3 ¼ ½X �az� X ��bzþ X ���ð1� jzÞ
ejz þ ½Y �az� Y ��bzþ Y ���ð1þ jzÞ
e�jz; ð16cÞ

where the starred X and Y are unknown functions of separation variables a and b, and j ¼
ða2 þ b2Þ1=2.
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The second part of v, denoted by vs, is a solution of (10) in spherical coordinates representing
the disturbance generated by the droplet and is given by

vs ¼ vsxex þ vsyey þ vszez; ð17Þ
where

vsx ¼
X1
n¼1

ðAnA0
n þ BnB0

n þ CnC0
nÞ;

vsy ¼
X1
n¼1

ðAnA00
n þ BnB00

n þ CnC00
nÞ;

vsz ¼
X1
n¼1

ðAnA000
n þ BnB000

n þ CnC000
n Þ:

ð18Þ

In (18), the primed An, Bn, and Cn are functions of position involving associated Legendre
functions of l or cos h defined by (2.6) of Ganatos et al. (1980) and An, Bn, and Cn are unknown
constants. Note that the boundary condition at infinity in (12e) is immediately satisfied by a
solution of the form given by (13)–(18).
The solution to (11) for the internal velocity field can be expressed as

v1 ¼ v1rer þ v1heh þ v1/e/; ð19Þ
where

v1r ¼
X1
n¼1

nP 1n ðlÞðCnrn�1 þ Anrnþ1Þ cos/;

v1h ¼
X1
n¼1

BnrnP 1n ðlÞð1
�

� l2Þ�1=2 � ð1� l2Þ1=2 dP
1
n ðlÞ
dl

Cnrn�1
�

� An
nþ 3
nþ 1 r

nþ1
��
cos/;

v1/ ¼
X1
n¼1

Bnrnð1
�

� l2Þ1=2 dP
1
n ðlÞ
dl

� ð1� l2Þ�1=2P 1n ðlÞ Cnrn�1
�

� An
nþ 3
nþ 1 r

nþ1
��
sin/;

ð20Þ

and An, Bn, and Cn are unknown constants. A solution of this form satisfies the requirement that
the velocity is finite for any position within the droplet.
As was the case with the solution for the temperature distribution, the determination of the

starred X and Y functions as well as the coefficients An, Bn, Cn, An, Bn, and Cn is undertaken by a
two-step procedure. First, the boundary conditions of (12d) is exactly satisfied on the plane walls
by using the Fourier transforms. Then, the conditions in (12a,b) and (12c) are satisfied numeri-
cally at collocation points on the droplet surface.
Application of the boundary conditions in (12d) to (13)–(18) and utilization of the Fourier sine

and cosine inversions on the variables x and y lead to a solution for D1, D2, and D3 in terms of the
coefficients An, Bn, and Cn. Substituting this solution back into (15) and using the integral rep-
resentations of the modified Bessel functions of the second kind, one obtains a new expression
from (13)–(18) for the external fluid velocity in terms of An, Bn, and Cn,

v ¼ vxex þ vyey þ vzez; ð21Þ
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where

vx ¼
X1
n¼1

AnðA0
n

h
þ a0

nÞ þ BnðB0
n þ b0

nÞ þ CnðC0
n þ c0nÞ

i
;

vy ¼
X1
n¼1

AnðA00
n

h
þ a00

nÞ þ BnðB00
n þ b00

nÞ þ CnðC00
n þ c00nÞ

i
;

vz ¼
X1
n¼1

AnðA000
n

h
þ a000

n Þ þ BnðB000
n þ b000

n Þ þ CnðC000
n þ c000n Þ

i
:

ð22Þ

Here, the primed an, bn, and cn are functions of position in the form of integration (which must be
performed numerically) defined by (C1) of Ganatos et al. (1980).
The boundary conditions that remain to be satisfied are those on the droplet surface. Substi-

tuting (8) and (19)–(22) into (12a,b) and (12c), one obtainsX1
n¼1

AnA�
nða; l;/Þ

	
þ BnB�

nða;l;/Þ þ CnC�
nða; l;/Þ



¼ Uð1� l2Þ1=2 cos/; ð23aÞ

X1
n¼1

AnA�
nða; l;/Þ

	
þ BnB�

nða;l;/Þ þ CnC�
nða;l;/Þ



�
X1
n¼1

Cnnan�1P 1n ðlÞ
	

þ Annanþ1P 1n ðlÞ


cos/ ¼ 0; ð23bÞ

X1
n¼1

AnA��
n ða;l;/Þ

	
þ BnB��

n ða; l;/Þ þ CnC��
n ða;l;/Þ



�
X1
n¼1

Bnanð1
�

� l2Þ�1=2P 1n ðlÞ

� Cnan�1ð1� l2Þ1=2 dP
1
n

dl
� An

nþ 3
nþ 1 a

nþ1ð1� l2Þ1=2 dP
1
n

dl

�
cos/ ¼ 0; ð23cÞ

X1
n¼1

AnA���
n ða;l;/Þ

	
þ BnB���

n ða;l;/Þ þ CnC���
n ða; l;/Þ



�
X1
n¼1

Bnanð1
�

� l2Þ1=2 dP
1
n

dl

� Cnan�1ð1� l2Þ�1=2P 1n ðlÞ � An
nþ 3
nþ 1 a

nþ1ð1� l2Þ�1=2P 1n ðlÞ
�
sin/ ¼ 0; ð23dÞ

X1
n¼1

o

or

�(
� 1

r

�
AnA��

n ðr;l;/Þ
	

þ BnB��
n ðr; l;/Þ þ CnC��

n ðr; l;/Þ



� ð1� l2Þ1=2

r
o

ol
AnA�

nðr;l;/Þ
	

þ BnB�
nðr; l;/Þ þ CnC�

nðr;l;/Þ

)

r¼a

� g�
X1
n¼1

Bnðn
�

� 1Þan�1P 1n ðlÞð1� l2Þ�1=2 � Cn2ðn� 1Þan�2ð1� l2Þ1=2 dP
1
n ðlÞ
dl

� An
nðnþ 2Þ
nþ 1 anð1� l2Þ1=2 dP

1
n ðlÞ
dl

�
cos/ ¼ �E1

ag
oc
oT

al

"
þ
X1
n¼1

Rnd
ð3Þ
n ða; lÞ

#
cos/;

ð23eÞ
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X1
n¼1

o

or

�(
� 1

r

�
AnA���

n ðr; l;/Þ
	

þ BnB���
n ðr; l;/Þ þ CnC���

n ðr; l;/Þ



þ ð1� l2Þ�1=2

r
o

o/
AnA�

nðr; l;/Þ
	

þ BnB�
nðr; l;/Þ þ CnC�

nðr; l;/Þ

)

r¼a

� g�
X1
n¼1

Bnðn
�

� 1Þan�1ð1� l2Þ1=2 dP
1
n ðlÞ
dl

� Cn2ðn� 1Þan�2ð1� l2Þ�1=2P 1n ðlÞ

� An
nðnþ 2Þ
nþ 1 anð1� l2Þ�1=2P 1n ðlÞ

�
sin/ ¼ E1

ag
oc
oT

"
� að1� l2Þ1=2 �

X1
n¼1

Rnd
ð1Þ
n ða; lÞ

#
sin/:

ð23fÞ

Here, the function dð3Þ
n ðr; lÞ in (23e) is defined by (B.1c), the definitions of the starred An, Bn, and

Cn functions are given by (B.4a)–(B.4i) and g� ¼ g1=g. The first M coefficients Rn have been de-
termined through the procedure given in the previous subsection.
Careful examination of (23a)–(23f) shows that the solution of the coefficient matrix generated is

independent of the / coordinate of the boundary points on the surface of the sphere r ¼ a. Thus,
these relations can be satisfied by utilizing the collocation technique presented for the solution of
the temperature field. At the droplet surface, (23a)–(23f) are applied at N discrete points (values of
h between 0 and p) and the infinite series in (20) and (22) are truncated after N terms. This
generates a set of 6N linear algebraic equations for the 6N unknown coefficients An, Bn, Cn, An, Bn,
and Cn. The fluid velocity field is completely obtained once these coefficients are solved for a
sufficiently large value of N. Note that the definite integrals in (23a)–(23f) after the substitution of
(B.4) must be performed numerically.

2.3. Derivation of the droplet velocity

The drag force exerted by the external fluid on the spherical droplet can be determined from
(Ganatos et al., 1980)

F ¼ �8pgA1ex: ð24Þ
This expression shows that only the lowest-order coefficient A1 contributes to the hydrodynamic
force acting on the droplet.
Because the droplet is freely suspended in the surrounding fluid, the net force exerted on the

droplet must vanish. Applying this constraint to (24), one has,

A1 ¼ 0: ð25Þ
To determine the thermocapillary migration velocity U of the droplet, (25) and the 6N algebraic
equations resulting from (23a)–(23f) are to be solved simultaneously.

3. Results and discussion

The solution for the thermocapillary motion of a spherical droplet parallel to two plane walls at
an arbitrary position between them, obtained by using the boundary-collocation technique de-
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scribed in the previous section, is presented in this section. The system of linear algebraic equa-
tions to be solved for the coefficients Rn and Rn is constructed from (9), while that for An, Bn, Cn,
An, Bn, and Cn is composed of (23a)–(23f). All the numerical integrations to evaluate the starred dn,
An, Bn, and Cn functions were done by the 80-point Gauss–Laguerre guadrature. The numerical
calculations were performed by using a DEC 3000/600 workstation.
When specifying the points along the semicircular generating arc of the sphere (with a constant

value of /) where the boundary conditions are to be exactly satisfied, the first points that should
be chosen are h ¼ 0 and p, since these points define the projected area of the droplet normal to the
direction of motion and control the gaps between the droplet and the neighboring plates. In
addition, the point h ¼ p=2 is also important. However, an examination of the systems of linear
algebraic equations in (9) and (23a)–(23f) shows that the matrix equations become singular if
these points are used. To overcome this difficulty, these points are replaced by closely adjacent
points, i.e., h ¼ d, p=2� d, p=2þ d, and p � d (Ganatos et al., 1980). Additional points along the
boundary are selected as mirror-image pairs about the plane h ¼ p=2 to divide the two quarter
arcs of the droplet into equal segments. The optimum value of d in this work is found to be 0.1�,
with which the numerical results of the droplet velocity converge satisfactorily. In selecting the
boundary points, any value of / may be used except for / ¼ 0, p=2, and p since the matrix
equation (23a)–(23f) is singular for these values.

3.1. Motion parallel to a single plane wall

The collocation solutions for the terminal velocity of a fluid droplet undergoing thermocapil-
lary migration parallel to a plane wall (with c ! 1) for different values of the parameters k�, g�,
and a=b are presented in Table 1 for the cases of an insulated wall and a wall with the imposed far-
field temperature gradient. The velocity for the thermocapillary motion of an identical droplet in
an infinite fluid, U0, given by (1), is used to normalize the boundary-corrected values. All of the
results obtained under this collocation scheme converge satisfactorily to at least the significant
figures shown in the table. The accuracy and convergence behavior of the truncation technique is
principally a function of the ratio a=b. For the most difficult case with a=b ¼ 0:999, the numbers
of collocation points M ¼ 36 and N ¼ 36 are sufficiently large to achieve this convergence.
In Appendix A, an approximate solution for the same thermocapillary motion as that con-

sidered here is also obtained by using a method of reflections. The droplet velocity near a lateral
plate is given by (A.11), which is a power series expansion in kð¼ a=bÞ. The values of the wall-
corrected normalized thermocapillary mobility calculated from this asymptotic solution, with the
Oðk8Þ term neglected, are also listed in Table 1 for comparison. It can be seen that the asymptotic
formula of (A.11) from the method of reflections agrees very well with the exact results as long as
k6 0:8; the errors in all cases are less than 1.3%. However, accuracy of (A.11) begins to deteri-
orate, as expected, when the relative spacing between the droplet and the plane wall becomes small
(say, k P 0:9). In general, the formula of (A.11) overestimates the thermocapillary migration
velocity of the droplet when k is close to unity.
The exact numerical solutions for the normalized velocity U=U0 of a spherical droplet un-

dergoing thermocapillary motion parallel to a plane wall as a function of a=b are depicted in Figs.
2 and 3 for various values of k� and g�. It can be seen that the wall-corrected normalized ther-
mocapillary mobility of the droplet decreases with an increase in k� for the case of an insulated
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wall (the boundary condition (3c) is used), but increases with an increase in k� for the case of a
plane wall prescribed with the far-field temperature distribution (the boundary condition (3e) is
used), keeping the other factors (g� and a=b) unchanged. These decrease and increase in the
droplet mobility becomes more pronounced as a=b increases. This behavior is expected knowing
that the temperature gradients on the droplet surface near an insulated wall decrease as the rel-
ative conductivity k� increases and these gradients near a wall with the imposed far-field tem-
perature gradient increase as k� increases. On the other hand, the wall-corrected normalized
thermocapillary mobility of the droplet increases with an increase in g� for any given values of k�

and a=b in both cases of the plane wall, in agreement with the prediction from the method-of-
reflection solution given by (A.11). As expected, when k� ¼ 1, the two types of plane walls will
result in the same effects on the thermocapillary motion of the droplet. In this particular case, the
effect of thermal interaction between the droplet and the wall disappears, and the relative ther-
mocapillary mobility of the droplet decreases monotonically with a=b solely owing to the hy-
drodynamic resistance exerted by the presence of the wall.
Examination of the results shown in Figs. 2 and 3 reveals an interesting feature. For the case

that the wall is an insulated plane under the situation of large g� and small k� (e.g., with g� ¼ 100
and k� ¼ 0), the thermocapillary mobility of the droplet decreases with an increase in a=b as a=b is
small, but increases from a minimum with increasing a=b as a=b is sufficiently large. Under the

Table 1

Normalized thermocapillary migration velocity of a spherical droplet parallel to a single plane wall computed from the

exact boundary-collocation solution and the asymptotic method-of-reflection solution

a=b U=U0

k� ¼ g� ¼ 0 k� ¼ g� ¼ 10

Exact solution Asymptotic solution Exact solution Asymptotic solution

For an insulated plane wall

0.2 0.99950 0.99950 0.99828 0.99827

0.4 0.99577 0.99576 0.98648 0.98637

0.6 0.98339 0.98377 0.95378 0.95238

0.8 0.94340 0.95264 0.87831 0.87311

0.9 0.88498 0.92330 0.79943 0.80170

0.95 0.8186 0.90334 0.7269 0.75369

0.99 0.6989 0.88419 0.6155 0.70780

0.995 0.675 0.594

0.999 0.654 0.575

For a plane wall prescribed with the far-field temperature profile

0.2 0.99849 0.99849 0.99978 0.99978

0.4 0.98764 0.98763 0.99871 0.99860

0.6 0.95481 0.95531 0.99709 0.99552

0.8 0.86997 0.88045 0.99327 0.98395

0.9 0.77497 0.81557 0.98279 0.96846

0.95 0.6879 0.77320 0.9633 0.95606

0.99 0.5577 0.73348 0.9175 0.94302

0.995 0.533 0.909

0.999 0.513 0.904
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other situations (with small g� or large k�), the thermocapillary mobility of the droplet near the
insulated wall is a monotonically decreasing function of a=b. For the case that a linear temper-
ature profile is prescribed on the plane wall which is consistent with the far-field distribution under
the situation of large g� and large k� (e.g., with g� ¼ 100 and k� P 10), the thermocapillary

Fig. 2. Plots of the normalized thermocapillary mobility U=U0 of a spherical droplet migrating parallel to a plane wall
versus the separation parameter a=b for various values of g�: (a) k� ¼ 0; (b) k� ¼ 100. The solid curves represent the case
of an insulated wall, and the dashed curves denote the case of a wall on which the far-field temperature gradient is

imposed. The points are the combined analytical–numerical results obtained by Meyyappan and Subramanian (1987)

for the thermocapillary migration of a spherical bubble (with k� ¼ g� ¼ 0) parallel to a plane wall prescribed with the
far-field temperature distribution.
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mobility of the droplet first goes through a minimum with the increase of a=b from a=b ¼ 0 and
then increases monotonically. When the gap between the droplet and the wall turns thin, the
droplet can even move faster than it would at a=b ¼ 0. For example, at the values of k� ¼ g� ¼
100 and a=b ¼ 0:999, the thermocapillary velocity can be as much as 13% higher than the value
with the wall being far away from the droplet. Under the situation of small k� or small g�, the
thermocapillary mobility of the droplet near the wall prescribed with the far-field temperature
distribution becomes a monotonically decreasing function of a=b. Under some situations of in-
termediate values of g� (e.g., with g� ¼ 1–10 and k� ¼ 100), the droplet mobility as a function of
a=b can have two or three extremes (minima or maxima) in the whole range of 0 < a=b < 1. This
interesting feature that U=U0 may not be a monotonic function of a=b and can even be greater
than unity is understandable because the wall effect of hydrodynamic resistance on the droplet is
in the competition with the wall effect of thermal enhancement when a droplet with small k� is
undergoing thermocapillary motion parallel to an insulated plate or when a droplet with large k�

is moving near a lateral plate with the imposed far-field temperature gradient. A careful exam-
ination of the asymptotic formula for U=U0 given by (A.11) shows a good agreement of the
numerical outcome in Figs. 2 and 3 with the analytical solution.
Through the use of bipolar coordinates, Meyyappan and Subramanian (1987) obtained some

semianalytical–seminumerical solutions for the normalized themocapillary velocity U=U0 of a
spherical gas bubble (with k� ¼ g� ¼ 0) migrating parallel to a plane wall prescribed with the far-
field temperaure distribution. These solutions are also presented in Fig. 2(a) for comparison. It
can be seen that the bipolar-coordinate solution for U=U0 of a bubble at a given value of a=b is far
greater than our corresponding collocation solution (illustrated by the lowest dashed curve in Fig.
2a). A detailed comparison given by Table 2 shows that our collocation solutions agree much

Fig. 3. Plots of the normalized thermocapillary mobility (solid curves, with k� ¼ 1) and sedimenting mobility (dashed
curves) of a spherical droplet migrating parallel to a plane wall versus the separation parameter a=b for different values
of g�.
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better with the method-of-reflection solution given by (A.11) than the bipolar-coordinate solu-
tions do for all values of a=b less than 0.9. It seems quite likely that these bipolar-coordinate
solutions are in error. Note that the relative thermocapillary velocity of a gas bubble near a plane
wall always decreases as the relative gap thickness decreases (or a=b increases) no matter whether
the wall is insulated or prescribed with the far-field temperature distribution.
For the creeping motion of a spherical droplet on which a constant body force F ex (e.g., a

gravitational field) is exerted parallel to an infinite plane wall, the exact result of the droplet
velocity has recently been developed by using the boundary-collocation technique (Keh and Chen,
2001). A comparison of the boundary effects on the translation of the fluid sphere under gravity
ðin which U0 ¼ ðF =6pgaÞð3g� þ 3Þ=ð3g� þ 2ÞÞ and on the thermocapillary migration is given in
Fig. 3. Obviously, the wall effect on thermocapillary motion is much weaker than that on a
sedimenting or buoyantly rising droplet. Note that the wall effect on the droplet motion in
gravitational field is stronger when the value of g� becomes larger, which is opposite to that which
would occur if the droplet migrated near a plane wall due to thermocapillarity.

3.2. Motion parallel to two plane walls

Several of converged collocation solutions for the normalized velocity U=U0 of a spherical
droplet undergoing thermocapillary migration on the median plane between two parallel plane
walls (with c ¼ b) for various values of the parameters k�, g�, and a=b are presented in Table 3 for
both cases of insulated walls and walls prescribed with the far-field temperature distribution. The
corresponding method-of-reflection soultions, given by (A.20) in Appendix A as a power series

Table 2

A comparison of the normalized thermocapillary migration velocity U=U0 of a spherical bubble (with k� ¼ g� ¼ 0)
parallel to a single plane wall prescribed with the far-field temperature profi1e among the results obtained by Mey-

yappan and Subramanian (1987), our collocation solution, and the asymptotic reflection solution

a=b Meyyappan and Subramanian (1987) Collocation solution Asymptotic solution

0.95666 0.74314 0.67184 0.76697

0.92498 0.84781 0.73728 0.79534

0.88684 0.89967 0.79168 0.82551

0.84353 0.92698 0.83627 0.85509

0.79669 0.94236 0.87220 0.88221

0.74772 0.95217 0.90082 0.90592

0.69779 0.95953 0.92346 0.92592

0.66667 0.96354 0.93503 0.93656

0.64805 0.96581 0.94118 0.94231

0.50000 0.98172 0.97511 0.97516

0.42510 0.98808 0.98507 0.98507

0.33333 0.99392 0.99293 0.99293

0.26580 0.99681 0.99645 0.99645

0.20000 0.99860 0.99849 0.99849

0.16307 0.99922 0.99919 0.99919

0.10000 0.99982 0.99981 0.99981

0.06667 0.99995 0.99994 0.99994

0.04000 0.99999 0.99999 0.99999
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expansion in k(¼ a=b) correct to Oðk7Þ, are also listed in this table for comparison. Partly similar
to the case of migration of a droplet parallel to a single plane wall considered in the previous
subsection, the approximate analytical formula of (A.20) agrees very well with the exact results as
long as k6 0:6, but can have significant errors when k P 0:8. The formula of (A.20) always
overestimates the thermocapillary migration velocity of the droplet. A comparison between Table
3 for the case of a slit and Table 1 for the case of a single parallel plane indicates that the as-
sumption that the boundary effect for two walls can be obtained by simple addition of single-wall
effect leads to a smaller correction to thermocapillary motion as a=b is small but can give a greater
correction as a=b becomes large.
In Fig. 4, the collocation results for the normalized thermocapillary mobility U=U0 of a fluid

sphere migrating on the median plane between two parallel plane walls are plotted as functions of
a=b for several values of k� and g�. Analogous to the corresponding motion of a droplet parallel to
a single plane wall, for specified values of g� and a=b, U=U0 increases with an increase in k� for the
case of walls with the imposed far-field temperature gradient and decreases with an increase in k�

for the case of insulated walls. For either case of the plane walls, U=U0 increases with an increase
in g� for fixed values of k� and a=b. Again, for the case of insulated walls under the situation of
large g� and small k�, or for the case of walls prescribed with the far-field temperature distribution

Table 3

Normalized velocity of a spherical droplet undergoing thermocapillary migration on the median plane between two

parallel plane walls computed from the exact boundary-collocation solution and the asymptotic method-of-reflection

solution

a=b U=U0

k� ¼ g� ¼ 0 k� ¼ g� ¼ 10

Exact solution Asymptotic solution Exact solution Asymptotic solution

For insulated plane walls

0.2 0.99786 0.99786 0.99496 0.99496

0.4 0.98269 0.98270 0.96228 0.96267

0.6 0.93986 0.94030 0.88483 0.89247

0.8 0.84515 0.85239 0.75406 0.81225

0.9 0.75426 0.78347 0.65752 0.79535

0.95 0.6755 0.74091 0.5863 0.80043

0.99 0.5571 0.70238 0.4915 0.81391

0.995 0.535 0.475

0.999 0.517 0.461

For plane walls prescribed with the far-field temperature profile

0.2 0.99576 0.99576 0.99811 0.99811

0.4 0.96621 0.96628 0.98692 0.98714

0.6 0.88639 0.88817 0.96491 0.96893

0.8 0.72600 0.74398 0.93828 0.96546

0.9 0.59298 0.64494 0.92380 0.98347

0.95 0.4954 0.58899 0.9092 1.00108

0.99 0.3746 0.54141 0.8785 1.02050

0.995 0.354 0.875

0.999 0.338 0.874
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under the situation of large g� and large k�, the thermocapillary mobility of the droplet first goes
through a minimum with the increase of a=b from a=b ¼ 0 and then increases monotonically, and
the droplet can even move faster than it would at a=b ¼ 0. This result indicates that the effect of
thermal enhancement, rather than that of hydrodynamic resistance, can be overriding when the
droplet-wall gap thickness is small. An examination of the asymptotic formula for U=U0 in (A.20)
also shows a good agreement of the trend in Fig. 4 with the analytical solution.

Fig. 4. Plots of the normalized thermocapillary mobility U=U0 of a spherical droplet migrating on the median plane
between two parallel plane walls (with c ¼ b) versus the separation parameter a=b for several values of g�: (a) k� ¼ 0;
(b) k� ¼ 100. The solid curves represent the case of insulated walls, and the dashed curves denote the case of walls
prescribed with the far-field temperature distribution.
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A careful comparison of the curves in Fig. 4 for the case of a slit with the corresponding curves
in Fig. 2 for the case of a single wall reveals an interesting feature of the boundary effect on
thermocapillary migration of a fluid sphere. The presence of a second, identical, lateral plane wall,
even at a symmetric position with respect to the sphere against the first, does not always enhance
the wall effect on the thermocapillary droplet induced by the first plate only. In fact, the wall
effects on the droplet mobility for the two bounded cases can lead to opposite results relative to its
isolated value. For example, the thermocapillary mobility of a droplet parallel to a single plate
prescribed with the far-field temperature distribution at values k� ¼ 100, g� ¼ 10, and a=b ¼ 0:8 is
greater than that in an unbounded fluid by about 1.5%, while the mobility of the droplet un-
dergoing thermocapillary migration on the central plane of a slit under identical conditions is
about 2.5% smaller than its isolated value. These results reflect again the fact that the lateral wall
can affect the thermal driving force and the viscous drag force on a fluid droplet in opposite
directions. Each force is increased in its own direction, but to a different degree, for the case of
thermocapillary motion of a droplet in a slit relative to that for the case of migration parallel to a
single plate. Thus, the net effect composed of these two opposite forces for the slit case is not
necessarily to enhance that for the case of a single wall.
Fig. 5 shows the collocation results for the normalized mobility U=U0 of a fluid sphere un-

dergoing thermocapillary motion parallel to two plane walls at various positions between them for
a general case (with k� ¼ g� ¼ 1). The dashed curves (with a=b ¼ constant) illustrate the effect of
the position of the second wall (at z ¼ c) on the droplet mobility for various values of the relative
sphere-to-first-wall spacing b=a. The solid curves (with 2a=ðbþ cÞ ¼ constant) indicate the vari-
ation of the droplet mobility as a function of the sphere position at various values of the relative
wall-to-wall spacing ðbþ cÞ=2a. It can be seen that the net wall effect is to reduce the thermo-

Fig. 5. Plots of the normalized thermocapillary mobility U=U0 of a spherical droplet migrating parallel to two plane
walls versus the ratio b=ðbþ cÞ for the case of k� ¼ g� ¼ 1 with a=b and 2a=ðbþ cÞ as parameters.
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capillary mobility of the droplet. At a given value of 2a=ðbþ cÞ, the droplet experiences a mini-
mum viscous drag force and has a greatest mobility when it is located midway between the two
walls (with c ¼ b). The hydrodynamic drag increases and the droplet mobility decreases as the
droplet approaches either of the walls (or the ratio b=ðbþ cÞ decreases). At a specified value of a=b
for the thermocapillary droplet near a first lateral wall, the presence of a second plate is to further
reduce the relative velocity of the droplet, and the degree of this reduction increases monotoni-
cally with a decrease in the relative distance between the droplet and the second plate ðor with an
increase in b=ðbþ cÞÞ.
The collocation solution for the problem of sedimentation of a fluid sphere parallel to two

plane walls at an arbitrary position between them was also obtained (Keh and Chen, 2001).
Comparing that solution with the present result, we still find that the wall effect on thermocap-
illary migration in general is much weaker than that on sedimentation. Opposite to the cases of
thermocapillary migration illustrated in Fig. 4, the retardation effect on the sedimenting droplet in
a slit is stronger for a greater value of g�.

4. Conclusions

In this work, the exact numerical solutions and approximate analytical solutions for the steady
thermocapillary motion of a fluid sphere parallel to two infinite plane walls at an arbitrary po-
sition between them have been obtained by using the boundary-collocation technique and the
method of reflections, respectively. Both the cases of insulated walls and of walls with the imposed
far-field temperature gradient were examined in the limit of vanishingly small Reynolds and Peclet
numbers. It has been found that the boundary effect on thermocapillary motion of a fluid particle
is quite complicated. The thermocapillary mobility of a droplet near a plane wall is generally, but
not necessarily, a monotonic decreasing function of the separation parameter a=b. When the
relative viscosity of the droplet g� is large and the value of a=b is close to unity, the wall effect can
speed up or slow down the droplet velocity relative to its isolated value depending on the value of
the relative thermal conductivity of the droplet k� and the thermal boundary condition at the wall.
This behavior reflects the competition between the weak hydrodynamic retardation exerted by the
neighboring walls on the droplet migration and the possible, relatively strong thermocapillary
enhancement due to the thermal interaction between the droplet and the lateral walls.
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Appendix A. Analysis of the thermocapillary migration of a droplet parallel to plane walls by a
method of reflections

In this appendix, we analyze the steady thermocapillary motion of a fluid sphere with relative
thermal conductivity k� and relative viscosity g� either parallel to an infinite flat wall (c ! 1) or
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on the median plane between two parallel plates (c ¼ b), as shown in Fig. 1, by a method of
reflections. The effect of the walls on the droplet velocity is sought in expansions of k, which
equals a=b, the ratio of the droplet radius to the distance between the walls and the center of the
droplet.

A.1. Motion parallel to an infinite plane wall

For the problem of thermocapillary motion parallel to an insulated plane wall, the governing
equations in (2a) and (10) must be solved by satisfying the boundary conditions (3a)–(3d) and
(12a)–(12e) with c ! 1. The method-of-reflection solution consists of the following series, whose
terms depend on increasing powers of k:

T ¼ T0 þ E1xþ T ð1Þ
p þ T ð1Þ

w þ T ð2Þ
p þ T ð2Þ

w þ � � � ;
v ¼ vð1Þp þ vð1Þw þ vð2Þp þ vð2Þw þ � � � ;

ðA:1Þ

where subscripts w and p represent the reflections from wall and droplet, respectively, and the
superscript (i) denotes the ith reflection from that surface. In these series, all the expansion sets of
the corresponding temperature and velocity for the external fluid must satisfy (2a) and (10). The
advantage of this method is that it is necessary to consider boundary conditions associated with
only one surface at a time.
According to (A.1), the thermocapillary migration velocity of the droplet can also be expressed

in the series form,

U ¼ U0ex þUð1Þ þUð2Þ þ � � � ; ðA:2Þ

In this expression, U0 is the thermocapillary velocity of an identical droplet suspended freely in the
continuous phase far from the wall given by (1); UðiÞ is related to rT ðiÞ

w and vðiÞw by (Anderson,
1985; Chen and Keh, 1990)

UðiÞ ¼ A
a
g

�
� oc
oT

�
rT ðiÞ

w

	 

0
þ vðiÞw
	 


0
þ C

a2

6
r2vðiÞw
	 


0
: ðA:3Þ

Here, A ¼ 2ð2þ k�Þ�1ð2þ 3g�Þ�1, C ¼ 3g�ð2þ 3g�Þ�1, and the subscript 0 to variables inside
brackets denotes evaluation at the position of the droplet center. Note that 06A6 1=2 and
06C6 1. The last two terms in (A.3) represent the Faxen law for the isothermal motion of a
force-free fluid sphere (Hetsroni and Haber, 1970).
The solution for the first reflected fields from the droplet is

T ð1Þ
p ¼ GE1a3r�2 sin h cos/; ðA:4aÞ

vð1Þp ¼ 1
2
U0a3r�3ð2 sin h cos/er � cos h cos/eh þ sin/e/Þ; ðA:4bÞ

where G ¼ ð1� k�Þð2þ k�Þ�1. Obviously, �16G6 1=2, with the upper and lower bounds oc-
curring at the limits k� ¼ 0 and k� ! 1, respectively. The velocity distribution shown in (A.4b) is
identical to the irrotational flow surrounding a rigid sphere moving with velocity U0ex.
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The boundary conditions for the ith reflected fields from the wall are derived from (3c), (3d),
(12d) and (12e),

z ¼ �b :
oT ðiÞ

w

oz
¼ �

oT ðiÞ
p

oz
; ðA:5aÞ

z ¼ �b : vðiÞw ¼ �vðiÞp ; ðA:5bÞ

r ! 1; z > �b : T ðiÞ
w ! 0; ðA:5cÞ

r ! 1; z > �b : vðiÞw ! 0: ðA:5dÞ
The solution of T ð1Þ

w is obtained by applying complex Fourier transforms on x and y in (2a),
(A.5a) and (A.5c), with the result

T ð1Þ
w ¼ GE1a3x½x2 þ y2 þ ðzþ 2bÞ2
�3=2: ðA:6aÞ

This reflected temperature field may be interpreted as arising from the reflection of the imposed
field E1ex from a fictitious droplet identical to the actual droplet, its location being at the mirror-
image position of the actual droplet with respect to the plane z ¼ �b (i.e. at x ¼ 0, y ¼ 0,
z ¼ �2b). The solution of vð1Þw can be found by fitting the boundary conditions (A.5b) and (A.5d)
with the general solution to (10) established by Faxen (Happel and Brenner, 1983), which results
in

vð1Þw ¼ U0a3

4p

Z 1

�1

Z 1

�1
eiðaxþbyÞ�jðzþ2bÞ

�
� ½2jðzþ bÞ þ 1
iaez

� ½2jðzþ bÞ � 1
 a2

j
ex

�
þ ab

j
ey

��
dadb; ðA:6bÞ

where j ¼ ða2 þ b2Þ1=2, and i ¼
ffiffiffiffiffiffiffi
�1

p
.

The contributions of T ð1Þ
w and vð1Þw to the droplet velocity are determined by using (A.3),

U
ð1Þ
t ¼ A

a
g

�
� oc
oT

�
½rT ð1Þ

w 
r¼0 ¼
1

8
Gk3U0ex; ðA:7aÞ

U
ð1Þ
h ¼ vð1Þw

�
þ C

a2

6
r2vð1Þw

�
r¼0

¼ � 1
8
ðk3 � Ck5ÞU0ex; ðA:7bÞ

Uð1Þ ¼ Uð1Þ
t þUð1Þ

h ¼ 1
8
½�ð1� GÞk3 þ Ck5
U0ex: ðA:7cÞ

Eq. (A.7a) shows that the reflected temperature field from the insulated wall can increase (if G > 0
or k� < 1) or decrease (if G < 0 or k� > 1) the velocity of the thermocapillary droplet, while (A.7b)
indicates that the reflected velocity field is to decrease this velocity; the net effect of the reflected
fields is expressed by (A.7c), which can enhance or retard the movement of the droplet, depending
on the combination of the values of G (or k�), g�, and k. When G ¼ 0 (or k� ¼ 1), the reflected
temperature field makes no contribution to the thermocapillary migration velocity. Eqs. (A.7a)–
(A.7c) indicate that the wall correction to the velocity of the thermocapillary droplet is O(k3),
which is weaker than that obtained for the corresponding sedimentation problem, in which the
leading boundary effect is O(k). Note that the wall effect on thermocapillary motion involving the
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viscosity parameter g� appears starting from O(k5), and the normalized droplet velocity increases
with an increase in g�. The necessary conditions for the wall enhancement on the thermocapillary
motion to occur are a small value of k�, a large value of g�, and a value of k close to unity such
that the relation Ck5 > ð1� GÞk3 is warranted.
The solution for the second reflected fields from the droplet is

T ð2Þ
p ¼ 1

8
E1½G2k3a3r�2 sin h cos/ þ GHk4a4r�3 cos h sin h cos/ þOðk5a5Þ
; ðA:8aÞ

vð2Þp ¼ 1

32
U0 2Gk3a3r�3ð2 sin h cos/er

�
� cos h cos/eh þ sin/e/Þ

� 3 D
�

� 2GB
A

�
k4a2r�2 cos h sin h cos/er þOðk4a4; k5a3Þ

�
: ðA:8bÞ

Here, H ¼ 3ð1� k�Þð3þ 2k�Þ�1, B ¼ 3ð3þ 2k�Þ�1ð1þ g�Þ�1, and D ¼ 3ð2þ 5g�Þð1þ g�Þ�1.
The boundary conditions for the second reflected fields from the wall are obtained by substi-

tuting the results of T ð2Þ
p and vð2Þp into (A.5a)–(A.5d), with which (2a) and (10) can be solved as

before to yield

½rT ð2Þ
w 
r¼0 ¼

1

64
G2k6

�
þOðk8Þ

�
E1ex; ðA:9aÞ

½vð2Þw 
r¼0 ¼
�
� 1

256
3D

�
� 2 3

B
A

�
� 2

�
G
�
k6 þOðk8Þ

�
U0ex: ðA:9bÞ

The contribution of the second reflected fields to the droplet velocity is obtained by putting T ð2Þ
w

and vð2Þw into (A.3), which gives

Uð2Þ ¼
�
� 1

256
3D

�
� 2 3

B
A

�
� 2

�
G� 4G2

�
k6 þOðk8Þ

�
U0ex: ðA:10Þ

The errors for Uð2Þ is O(k8), because the O(k7) terms in the expansions of rT ð2Þ
w and vð2Þw vanish at

the center of the droplet.
Obviously, Uð3Þ will be O(k9). With the substitution of (A.7c) and (A.10) into (A.2), the droplet

velocity can be expressed as U ¼ Uex with

U ¼ U0 1

�
� 1
8
ð1� GÞk3 þ C

8
k5 � 1

256
3D

�
� 2 3

B
A

�
� 2

�
G� 4G2

�
k6 þOðk8Þ

�
: ðA:11Þ

The droplet migrates along the imposed temperature gradient at a rate that can increase or de-
crease as the droplet approaches the wall. Owing to the neglect of the inertial effect, the wall does
not deflect the direction of thermocapillary migration.
For the case that a linear temperature profile is prescribed on the plane wall which is consistent

with the far-field distribution, namely, the boundary condition (3c) is replaced by (3e), the series
expansions (A.1) and (A.2), the solution of T ð1Þ

p and vð1Þp in (A.4a) and (A.4b), and the boundary
conditions for T ðiÞ

w and vðiÞw in (A.5b)–(A.5d) are still valid, while (A.5a) becomes

z ¼ �b : T ðiÞ
w ¼ �T ðiÞ

p : ðA:12Þ
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With this change, it can be shown that the results of the reflected fields and of the droplet velocity
are also obtained from (A.6a)–(A.11) by replacing G by �G. Thus, contrary to the effect of an
insulated plane wall, the reflected temperature field from a parallel wall with the imposed far-field
temperature gradient reduces the droplet velocity if G > 0 or k� < 1 and enhances this velocity if
G < 0 or k� > 1. WhenG ¼ 0 or k� ¼ 1, the two types of plane wall will produce the same effects on
the thermocapillary motion of the droplet. Under the conditions that the values of k�, g� and k are
sufficiently large such that Ck5 > ð1þ GÞk3, the net effect of a lateral plane wall prescribed with the
far-field temperature distribution can enhance the thermocapillary migration of a droplet.

A.2. Motion on the median plane between two parallel flat walls

For the problem of thermocapillary motion on the median plane between two insulated parallel
plates, the boundary conditions corresponding to governing equations (2a) and (10) are given by
(3a)–(3d) and (12a)–(12e) with c ¼ b. With k ¼ a=b � 1, the series expansions of the temperature,
fluid velocity, and droplet velocity given by (A.1)–(A.4b) remain valid here. From (3c), (3d), (12d)
and (12e), the boundary conditions for T ðiÞ

w and vðiÞw are found to be

jzj ¼ b :
oT ðiÞ

w

oz
¼ �

oT ðiÞ
p

oz
; ðA:13aÞ

jzj ¼ b : vðiÞw ¼ �vðiÞp ; ðA:13bÞ

r ! 1; jzj6 b : T ðiÞ
w ! 0; ðA:13cÞ

r ! 1; jzj6 b : vðiÞw ! 0: ðA:13dÞ

The first wall-reflected fields can be solved by the same method as used for a single lateral plate
in the previous subsection, with the results

T ð1Þ
w ¼ �GE1a3

2p

Z 1

�1

Z 1

�1

ia
j
eiðaxþbyÞ�jb coshðjzÞ

sinhðjbÞ dadb;

vð1Þw ¼ U0a3

2p

Z 1

�1

Z 1

�1

1

sinhð2jbÞ � 2jb

� eiðaxþbyÞ ½sinhðjzÞ
�

� jz coshðjzÞ þ g sinhðjzÞ
iaez

þ ½jz sinhðjzÞ � g coshðjzÞ
 a2

j
ex

�
þ ab

j
ey

��
dadb;

ðA:14Þ

where j ¼ ða2 þ b2Þ1=2 and g ¼ jb� e�jb sinhðjbÞ. The contributions of T ð1Þ
w and vð1Þw to the droplet

velocity are determined using (A.3), which lead to a result similar to (A.7a)–(A.7c),
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U
ð1Þ
t ¼ d1Gk3U0ex;

U
ð1Þ
h ¼ �ðd2k3 � d3Ck5ÞU0ex;
Uð1Þ ¼ Uð1Þ

t þUð1Þ
h ¼ ½�ðd2 � d1GÞk3 þ d3Ck5
U0ex;

ðA:15Þ

where

d1 ¼
Z 1

0

q2

e2q � 1 dq ¼ 0:300514; ðA:16aÞ

d2 ¼
1

2

Z 1

0

q2ðq � e�q sinhqÞ
sinhð2qÞ � 2q dq ¼ 0:417956; ðA:16bÞ

d3 ¼
1

6

Z 1

0

q4

sinhð2qÞ � 2q dq ¼ 0:338324: ðA:16cÞ

Analogous to the previous case, the results of the second reflections can be obtained as

T ð2Þ
p ¼ E1½d1G2k3a3r�2 sin h cos/ þOðk5a5Þ
; ðA:17aÞ

vð2Þp ¼ U0
2

d1Gk3a3r�3ð2 sin h cos/er
	

� cos h cos/eh þ sin/e/Þ þOðk5a3Þ


; ðA:17bÞ

½rT ð2Þ
w 
r¼0 ¼ ½d21G2k

6 þOðk8Þ
E1ex; ðA:18aÞ
½vð2Þw 
r¼0 ¼ ½�d1d2Gk6 þOðk8Þ
U0ex; ðA:18bÞ

and

Uð2Þ ¼ ½�ðd1d2G� d21G
2Þk6 þOðk8Þ
U0ex: ðA:19Þ

Note that the k4a2 and k4a4 terms in the expressions for T ð2Þ
p and vð2Þp vanish. With the combination

of (A.2), (A.15), and (A.19), the droplet velocity can be expressed as U ¼ Uex with

U ¼ U0½1� ðd2 � d1GÞk3 þ d3Ck5 � ðd1d2G� d21G
2Þk6 þOðk8Þ
: ðA:20Þ

For the case that the droplet is undergoing thermocapillary migration on the median plane
between two parallel plates on which a linear temperature profile consistent with the far-field
distribution is imposed, (3c) should be replaced by (3e). In this case, (A.1)–(A.4b) and (A.13b)–
(A.13d) are still applicable, while (A.13a) becomes

jzj ¼ b : T ðiÞ
w ¼ �T ðiÞ

p : ðA:21Þ

With this change, it can be shown that the results of the reflected fields and of the droplet velocity
are also obtained from (A.14)–(A.20) by replacing G and d1 by �G and d1, respectively, where

d1 ¼
Z 1

0

q2

e2q þ 1 dq ¼ 0:225386: ðA:22Þ

Comparing (A.20) for the slit case with (A.11) for the case of a single parallel plane, one can
find that the wall effects on the thermocapillary motion of a droplet in the two cases are quali-
tatively similar. However, the assumption that the result of the boundary effect for two walls can
be obtained by simple addition of the single-wall effect generally gives a smaller correction to
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thermocapillary motion, while for the corresponding sedimentation problem this approximation
overestimates the wall correction (Happel and Brenner, 1983).

Appendix B. Definitions of some functions in Section 2

The functions dðiÞ
n with i ¼ 1, 2, and 3 in (8), (9), (23e), and (23f) are defined by

dð1Þ
n ðr; lÞ ¼ r�n�1P 1n ðlÞ � ð�nÞm

Z 1

0

j1�mJ1ðjqÞ
sinh s

c2VnþmðcÞðsinhrÞ1�mðcosrÞm
h

� b2Vnþmð � bÞðsinhxÞ1�mðcoshxÞm
i
dj; ðB:1aÞ

dð2Þ
n ðr; lÞ ¼ �ðnþ 1Þr�n�2P 1n ðlÞ � ð�nÞm

Z 1

0

j2�m

sinh s
c2VnþmðcÞ lJ1ðjqÞðcosh rÞ1�mðsinh rÞm

hn
þ ð1� l2Þ1=2J 0

1ðjqÞðsinh rÞ1�mðcoshrÞm
i
� b2Vnþmð � bÞ lJ1ðjqÞðcoshxÞ1�mðsinhxÞm

h
þ ð1� l2Þ1=2J 0

1ðjqÞðsinhxÞ1�mðcoshxÞm
io
dj; ðB:1bÞ

dð3Þ
n ðr; lÞ ¼ �r�n�1 dP

1
n ðlÞ
dl

ð1� l2Þ1=2 þ ð�nÞmr
Z 1

0

j2�m

sinh s
c2VnþmðcÞ

n
� ð1
h

� l2Þ1=2J1ðjqÞðcoshrÞ1�mðsinhrÞm � lJ 0
1ðjqÞðsinhrÞ1�mðcoshrÞm

i
� b2Vnþmð � bÞ ð1

h
� l2Þ1=2J1ðjqÞðcoshxÞ1�mðsinhxÞm

� lJ 0
1ðjqÞðsinhxÞ1�mðcoshxÞm

io
dj: ðB:1cÞ

Here,

VnðziÞ ¼
ð2=pÞ1=2

znþ1i

Xn=2½ 


q¼0

ðj zij jÞn�q�ð1=2Þ

ð�2Þqq!ðn� 2q� 1Þ!Kn�q�ð3=2Þ ðj zij jÞ; ðB:2Þ

r ¼ jðzþ bÞ; x ¼ jðz� cÞ; s ¼ jðbþ cÞ; ðB:3a;b; cÞ
J1 is the Bessel function of the first kind of order one and the prime on it denotes differentiation
with respect to its argument, Km is the modified Bessel function of the second kind of order m, and
the square bracket [m] denotes the largest integer which is less than or equal to m. In (B.1a) and
(B.1b) m ¼ 0 if (3e) is used for the boundary condition of the temperature field at the plane walls
and m ¼ 1 if (3c) is used.The starred An, Bn, and Cn functions in (23a)–(23f) are defined by

A�
nðr;l;/Þ ¼ ð1� l2Þ1=2ðA0

n þ a0
nÞ cos/ þ ð1� l2Þ1=2ðA00

n þ a00
nÞ sin/ þ lðA000

n þ a000
n Þ; ðB:4aÞ

B�
nðr;l;/Þ ¼ ð1� l2Þ1=2ðB0

n þ b0
nÞ cos/ þ ð1� l2Þ1=2ðB00

n þ b00
nÞ sin/ þ lðB000

n þ b000
n Þ; ðB:4bÞ

C�
nðr;l;/Þ ¼ ð1� l2Þ1=2ðC0

n þ c0nÞ cos/ þ ð1� l2Þ1=2ðC00
n þ c00nÞ sin/ þ lðC000

n þ c000n Þ; ðB:4cÞ

A��
n ðr; l;/Þ ¼ lðA0

n þ a0
nÞ cos/ þ lðA00

n þ a00
nÞ sin/ � ð1� l2Þ1=2ðA000

n þ a000
n Þ; ðB:4dÞ
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B��
n ðr; l;/Þ ¼ lðB0

n þ b0
nÞ cos/ þ lðB00

n þ b00
nÞ sin/ � ð1� l2Þ1=2ðB000

n þ b000
n Þ; ðB:4eÞ

C��
n ðr; l;/Þ ¼ lðC0

n þ c0nÞ cos/ þ lðC00
n þ c00nÞ sin/ � ð1� l2Þ1=2ðC000

n þ c000n Þ; ðB:4fÞ
A���

n ðr;l;/Þ ¼ �ðA0
n þ a0

nÞ sin/ þ ðA00
n þ a00

nÞ cos/; ðB:4gÞ
B���

n ðr;l;/Þ ¼ �ðB0
n þ b0

nÞ sin/ þ ðB00
n þ b00

nÞ cos/; ðB:4hÞ
C���

n ðr;l;/Þ ¼ �ðC0
n þ c0nÞ sin/ þ ðC00

n þ c00nÞ cos/: ðB:4iÞ
Here, the primed An, Bn, Cn, an, bn, and cn are functions of position in (18) and (22).
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